Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability

نویسندگان

  • S. G. Yeager
  • J. I. Robson
چکیده

Purpose of Review Recent Atlantic climate prediction studies are an exciting new contribution to an extensive body of research on Atlantic decadal variability and predictability that has long emphasized the unique role of the Atlantic Ocean in modulating the surface climate. We present a survey of the foundations and frontiers in our understanding of Atlantic variability mechanisms, the role of the Atlantic Meridional Overturning Circulation (AMOC), and our present capacity for putting that understanding into practice in actual climate prediction systems. Recent Findings The AMOC—or more precisely, the buoyancy-forced thermohaline circulation (THC) that encompasses both overturning and gyre circulations—appears to underpin decadal timescale prediction skill in the subpolar North Atlantic in retrospective forecasts. Skill in predicting more wide-ranging climate variations, including those over land, is more limited, but there are indications this could improve with more advanced models. Summary Preliminary successes in the field of initialized Atlantic climate prediction confirm the climate relevance of low-frequency Atlantic Ocean dynamics and suggest that useful decadal climate prediction is a realizable goal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation.

Prediction of monsoon changes in the coming decades is important for infrastructure planning and sustainable economic development. The decadal prediction involves both natural decadal variability and anthropogenic forcing. Hitherto, the causes of the decadal variability of Northern Hemisphere summer monsoon (NHSM) are largely unknown because the monsoons over Asia, West Africa, and North Americ...

متن کامل

Evidence for multiple drivers of North Atlantic multi-decadal climate variability

[1] Observed North Atlantic Ocean surface temperatures have changed in a non-monotonic and non-uniform fashion over the last century. Here we assess the relative roles of greenhouses gases, anthropogenic aerosols, natural forcings and internal variability to the North Atlantic surface temperature decadal fluctuations using multi-model climate simulations driven by estimates of observed external...

متن کامل

Atlantic Climate Variability Experiment Prospectus

Energetic, large-scale variability is observed in the atmosphere and ocean of the Atlantic Sector on interannual and decadal time scales. It is manifested as coherent fluctuations in temperature , rainfall, surface pressure and temperature reaching eastward to central Europe and northern Asia, southward to subtropical West Africa and westward to North and South America with a myriad of well doc...

متن کامل

Synoptic climatology and the analysis of atmospheric teleconnections

Over recent decades, analyses of the structure and impact of atmospheric teleconnections have substantially increased our understanding of the climate system and the role of climate variability. Moving beyond simple correlations between teleconnection indices and temperature and precipitation anomalies, synoptic climatology has been able to provide insight on the spatiotemporal manifestation of...

متن کامل

Decadal to multidecadal variability and the climate change background

[1] Three prominent quasi-global patterns of variability and change are observed using the Met Office’s sea surface temperature (SST) analysis and almost independent night marine air temperature analysis. The first is a global warming signal that is very highly correlated with global mean SST. The second is a decadal to multidecadal fluctuation with some geographical similarity to the El Niño–S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017